organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-1,2-Dichloro-1,2-bis(3-chloroquinoxalin-2-yl)ethene

Hoong-Kun Fun,^a*‡ Jia Hao Goh,^a§ Annada C. Maity^b and Shyamaprosad Goswami^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India Correspondence e-mail: hkfun@usm.my

Received 20 December 2010; accepted 26 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.119; data-to-parameter ratio = 32.9.

The title compound, $C_{18}H_8Cl_4N_4$, exists in a *cis* configuration with respect to the bridging C=C bond. The two essentially planar quinoxaline ring systems [maximum deviations = 0.012(1) and 0.022(1)Å] are inclined at an angle of 59.84 (3). In the crystal, adjacent molecules are linked into chains propagating along [001] via intermolecular C-H···N hydrogen bonds. Weak intermolecular π - π [centroid–centroid distance = 3.6029 (7)°] and C-H··· π interactions are also observed.

Related literature

For general background to and applications of the title compound, see: Fun et al. (2009); Goswami et al. (2007). For closely related structures, see: Fun et al. (2009); Goswami et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data C18H8Cl4N4

 $M_{r} = 422.08$

Acta	Cryst.	(2011).	F67.	0290
/ iciu	cryst.	(2011).	201,	0200

Monoclinic, $P2_1/c$
a = 19.0972 (5) Å
b = 10.9883 (3) Å
c = 8.1905 (2) Å
$\beta = 90.782 \ (1)^{\circ}$
$V = 171858(8) Å^3$

Data collection

Bruker SMART APEXII CCD	72483 measured reflections
area-detector diffractometer	8778 independent reflections
Absorption correction: multi-scan	6556 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.061$
$T_{\rm min} = 0.608, T_{\rm max} = 0.933$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	267 parameters
$wR(F^2) = 0.119$	All H-atom parameters refined
S = 1.11	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
8778 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.79 \times 0.22 \times 0.10 \text{ mm}$

 $\mu = 0.70 \text{ mm}^{-1}$

T = 100 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13-C18 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C17 - H17 \cdots N2^{i}$ $C16 - H16 \cdots Cg1^{ii}$	0.995 (17) 0.97 (2)	2.454 (17) 3.00 (2)	3.2609 (16) 3.9664 (16)	137.8 (13) 176.0 (16)	
with with which we have $x_1 - y_1 + \frac{3}{2}, z_1 + \frac{1}{2}$ (ii) $x_1 - y_1 + \frac{1}{2}, z_1 - \frac{1}{2}$					

 $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and JHG thank USM for the Research University Grant (No. 1001/PFIZIK/811160). ACM and SG thank the DST, Government of India [SR/S1/OC-13/2005] for financial support. ACM also thanks the UGC, Government of India, for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5082).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Fun, H.-K., Kia, R., Maity, A. C., Chakrabarty, R. & Goswami, S. (2009). Acta Cryst E65 0354
- Goswami, S., Maity, A. C. & Fun, H.-K. (2007). Chem. Lett. 36, 552-553

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: C-7576-2009.

supplementary materials

Acta Cryst. (2011). E67, o290 [doi:10.1107/S1600536810054322]

(Z)-1,2-Dichloro-1,2-bis(3-chloroquinoxalin-2-yl)ethene

H.-K. Fun, J. H. Goh, A. C. Maity and S. Goswami

Comment

Halogen substituted heterocyclic compounds are of great importance due to their broad spectrum of use in organic chemistry. Recently a series of trichloromethyl substituted heterocyclic compounds have been synthesized by us in good yield using *N*-chlorosuccinimide (NCS) and triphenylphosphine (PPh₃) in carbon tetrachloride (Fun *et al.*, 2009; Goswami *et al.*, 2007). Here we report the results of X-ray crystallographic studies of the supramolecular self-assembly of a chlorine-substituted heterocyclic compound to show its possible choice of polymer formation by self-assembly. Reaction of 2-chloro-3trichloromethylquinoxaline with Co(I)(PPh₃)₃Cl results in the formation of the title compound.

The title compound (Fig. 1) exists in a *cis* configuration with respect to the bridging C9=C10 bond [bond length of C9=C10 = 1.3374 (16) Å and torsion angle of C8–C9–C10–C11 = -0.3 (2)°]. The two quinoxaline ring systems [(C1–C8/N1/N2) & (C11–C18/N3/N4)] are essentially planar, with maximum deviations of 0.022 (1) Å at atom C8 and -0.012 (1) Å at atom C11, respectively. An interplanar angle of 59.84 (3)° is formed between the two quinoxaline ring systems, indicating the molecule is not planar. All geometric parameters are consistent to those observed in closely related structures (Goswami *et al.*, 2007; Fun *et al.*, 2009).

In the crystal packing, intermolecular C17—H17···N2 hydrogen bonds (Table 1) link adjacent molecules into one-dimensional chains in an anti-parallel manner along the *c* axis (Fig. 2). Further stabilization of the crystal packing is provided by weak intermolecular C16—H16···Cg1 interactions (Table 1) as well as intermolecular Cg2···Cg3 interactions [3.6029 (7) Å; symmetry code: x, -y+3/2, z-1/2] where Cg1, Cg2 are the centroids of the C13–C18 and C1–C6 benzene rings, respectively, and Cg3 is the centroid of C1/C6–C8/N1/N2 pyrazine ring.

Experimental

2-Chloro-3-trichloromethylquinoxaline (1 mmol) was dissolved in dry benzene (30 ml). The anhydrous green coloured $Co(I)(PPh_3)_3Cl$ (2.5 mmol) catalyst was added to the reaction mixture with stirring at room temperature under nitrogen atmosphere. After 30 minutes, the colour of the reaction mixture changed from green to blue. The reaction mixture was then heated under reflux condition for 2-3 h. The solvent was evaporated to dryness. The residue was then worked up with water and the organic part was extracted with chloroform. The organic layer was dried (Na₂SO₄) and concentrated. Column chromatography of the crude product on silica gel and elution with methanol in chloroform afforded the title compound. Single crystals were grown by slow evaporation of a 1:1 solution of CHCl₃ and methanol.

Refinement

All H atoms were located from a difference Fourier map, and allowed to refine freely with range of C—H = 0.89 (2)–0.994 (18) Å. The reflection (100) was omitted as the intensity was affected by the beam backstop.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2. The crystal structure of the title compound, viewed along the b axis, showing a pair of 1D chains propagating along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

(Z)-1,2-Dichloro-1,2-bis(3-chloroquinoxalin-2-yl)ethene

Crystal data	
$C_{18}H_8Cl_4N_4$	F(000) = 848
$M_r = 422.08$	$D_{\rm x} = 1.631 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9887 reflections
<i>a</i> = 19.0972 (5) Å	$\theta = 2.1 - 37.2^{\circ}$
b = 10.9883 (3) Å	$\mu = 0.70 \text{ mm}^{-1}$
c = 8.1905 (2) Å	T = 100 K
$\beta = 90.782 \ (1)^{\circ}$	Block, yellow
$V = 1718.58 (8) \text{ Å}^3$	$0.79 \times 0.22 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	8778 independent reflections
Radiation source: fine-focus sealed tube	6556 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.061$
φ and ω scans	$\theta_{\text{max}} = 37.2^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -32 \rightarrow 32$
$T_{\min} = 0.608, \ T_{\max} = 0.933$	$k = -18 \rightarrow 18$
72483 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.119$	All H-atom parameters refined
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.060P)^{2} + 0.1538P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
8778 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
267 parameters	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.230183 (15)	0.56482 (3)	-0.19687 (4)	0.01973 (7)
Cl2	0.408666 (15)	0.33929 (3)	-0.01835 (4)	0.02087 (7)
C13	0.277057 (17)	0.19701 (3)	0.08651 (5)	0.02505 (8)
Cl4	0.139656 (17)	0.28579 (3)	-0.12100 (4)	0.02431 (7)
N1	0.39159 (5)	0.59732 (9)	0.11036 (12)	0.01616 (17)
N2	0.30364 (5)	0.74383 (9)	-0.08414 (12)	0.01681 (17)
N3	0.21167 (5)	0.49059 (9)	0.24250 (12)	0.01686 (17)
N4	0.08344 (5)	0.42781 (9)	0.09017 (13)	0.01902 (19)
C1	0.40036 (6)	0.72039 (10)	0.10598 (14)	0.01538 (19)
C2	0.45443 (6)	0.77568 (11)	0.20007 (15)	0.0180 (2)
C3	0.46254 (7)	0.89969 (11)	0.19571 (16)	0.0202 (2)
C4	0.41789 (7)	0.97290 (11)	0.09745 (16)	0.0205 (2)
C5	0.36555 (7)	0.92203 (10)	0.00467 (15)	0.0181 (2)
C6	0.35580 (6)	0.79460 (10)	0.00883 (14)	0.01560 (19)
C7	0.29618 (6)	0.62669 (10)	-0.07490 (14)	0.01589 (19)
C8	0.33959 (6)	0.55012 (10)	0.02467 (14)	0.01502 (18)

supplementary materials

C9	0.33274 (6)	0.41522 (10)	0.03069 (15)	0.01644 (19)
C10	0.27542 (6)	0.35370 (10)	0.07344 (15)	0.0173 (2)
C11	0.20886 (6)	0.41146 (10)	0.12282 (14)	0.01590 (19)
C12	0.14274 (6)	0.38222 (10)	0.04606 (14)	0.0173 (2)
C13	0.08526 (6)	0.50918 (11)	0.21677 (15)	0.0181 (2)
C14	0.02225 (7)	0.56163 (13)	0.26997 (17)	0.0240 (2)
C15	0.02406 (8)	0.64421 (14)	0.39522 (19)	0.0281 (3)
C16	0.08807 (8)	0.67632 (13)	0.47183 (19)	0.0275 (3)
C17	0.15010 (7)	0.62649 (12)	0.42128 (16)	0.0230 (2)
C18	0.14972 (6)	0.54162 (10)	0.29197 (14)	0.01708 (19)
H2	0.4818 (9)	0.7241 (16)	0.265 (2)	0.026 (4)*
Н3	0.4954 (10)	0.9394 (17)	0.253 (2)	0.039 (5)*
H4	0.4232 (9)	1.0550 (17)	0.094 (2)	0.028 (5)*
Н5	0.3373 (9)	0.9670 (16)	-0.066 (2)	0.027 (4)*
H14	-0.0216 (9)	0.5407 (16)	0.215 (2)	0.030 (5)*
H15	-0.0164 (12)	0.6781 (18)	0.435 (3)	0.041 (6)*
H16	0.0870 (10)	0.7361 (18)	0.559 (3)	0.035 (5)*
H17	0.1949 (9)	0.6476 (16)	0.478 (2)	0.026 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01985 (13)	0.01898 (12)	0.02025 (13)	-0.00230 (9)	-0.00389 (10)	0.00064 (9)
Cl2	0.01669 (12)	0.01806 (12)	0.02796 (15)	0.00393 (9)	0.00359 (10)	0.00006 (10)
C13	0.02286 (14)	0.01315 (12)	0.03931 (18)	0.00158 (9)	0.00726 (12)	0.00199 (11)
Cl4	0.02400 (14)	0.02459 (14)	0.02439 (15)	-0.00171 (11)	0.00284 (11)	-0.00901 (11)
N1	0.0155 (4)	0.0167 (4)	0.0163 (4)	0.0010 (3)	0.0017 (3)	0.0000 (3)
N2	0.0176 (4)	0.0160 (4)	0.0169 (4)	-0.0001 (3)	0.0009 (3)	0.0005 (3)
N3	0.0165 (4)	0.0152 (4)	0.0190 (4)	0.0001 (3)	0.0029 (3)	0.0008 (3)
N4	0.0170 (4)	0.0209 (4)	0.0192 (5)	0.0002 (3)	0.0011 (4)	-0.0016 (4)
C1	0.0148 (4)	0.0158 (4)	0.0155 (5)	0.0010 (3)	0.0024 (4)	0.0005 (3)
C2	0.0162 (5)	0.0204 (5)	0.0174 (5)	0.0008 (4)	-0.0001 (4)	-0.0016 (4)
C3	0.0189 (5)	0.0204 (5)	0.0213 (5)	-0.0033 (4)	0.0009 (4)	-0.0026 (4)
C4	0.0230 (6)	0.0158 (5)	0.0227 (6)	-0.0016 (4)	0.0030 (4)	-0.0008 (4)
C5	0.0205 (5)	0.0151 (4)	0.0186 (5)	0.0011 (4)	0.0015 (4)	0.0007 (4)
C6	0.0145 (4)	0.0163 (4)	0.0161 (5)	0.0006 (3)	0.0022 (4)	-0.0002 (3)
C7	0.0149 (4)	0.0167 (4)	0.0161 (5)	0.0007 (3)	0.0005 (4)	0.0007 (4)
C8	0.0145 (4)	0.0149 (4)	0.0157 (5)	0.0013 (3)	0.0021 (4)	0.0007 (3)
C9	0.0158 (5)	0.0145 (4)	0.0190 (5)	0.0017 (3)	0.0018 (4)	0.0005 (4)
C10	0.0171 (5)	0.0139 (4)	0.0210 (5)	0.0012 (3)	0.0027 (4)	0.0008 (4)
C11	0.0158 (5)	0.0137 (4)	0.0183 (5)	0.0005 (3)	0.0028 (4)	0.0016 (3)
C12	0.0183 (5)	0.0164 (5)	0.0174 (5)	-0.0004 (4)	0.0019 (4)	-0.0017 (4)
C13	0.0181 (5)	0.0189 (5)	0.0172 (5)	0.0021 (4)	0.0012 (4)	0.0001 (4)
C14	0.0178 (5)	0.0288 (6)	0.0255 (6)	0.0051 (4)	0.0014 (5)	-0.0020 (5)
C15	0.0243 (6)	0.0317 (7)	0.0286 (7)	0.0078 (5)	0.0054 (5)	-0.0047 (5)
C16	0.0282 (7)	0.0267 (6)	0.0280 (7)	0.0018 (5)	0.0068 (5)	-0.0085 (5)
C17	0.0221 (6)	0.0228 (5)	0.0241 (6)	-0.0016 (4)	0.0024 (5)	-0.0059 (5)
C18	0.0177 (5)	0.0157 (4)	0.0179 (5)	0.0007 (4)	0.0021 (4)	-0.0003 (4)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—C7	1.7362 (11)	C4—H4	0.908 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl2—C9	1.7250 (12)	С5—С6	1.4130 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl3—C10	1.7253 (11)	С5—Н5	0.927 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl4—C12	1.7310 (12)	С7—С8	1.4289 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C8	1.3149 (15)	C8—C9	1.4889 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1	1.3632 (14)	C9—C10	1.3374 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C7	1.2974 (15)	C10—C11	1.4819 (16)
N3-C111,3108 (15)C13-C141,4086 (17)N3-C181,3754 (15)C13-C181,4146 (17)N4-C121,2941 (16)C14-C151,370 (2)N4-C131,3692 (16)C14-H140.974 (18)C1-C61,4156 (15)C15-C161,411 (2)C1-C21,4169 (16)C15-H150.92 (2)C2-C31,3720 (17)C16-C171,3739 (19)C2-H20.934 (18)C16-H160.97 (2)C3-C41,4153 (18)C17-C181,4111 (17)C3-H30.89 (2)C17-H170.994 (18)C4-C51,3669 (17)VVC8-N1-C1117.99 (10)C10-C9-C12120.67 (9)C7-N2-C6116.94 (10)C8-C9-C12113.54 (8)C11-N3-C18117.65 (10)C9-C10-C11124.28 (10)C12-N4-C13116.81 (10)C9-C10-C13115.17 (8)N1-C1-C6120.87 (10)C11-C10-C13115.17 (8)N1-C1-C2119.99 (10)N3-C11-C12120.10 (10)C3-C2-C1119.56 (11)C12-C11123.88 (11)C1-C2-H2123.7 (11)N4-C12-C14115.93 (9)C2-C3-H3123.4 (12)N4-C13-C18120.4 (11)C4-C3-C3120.93 (11)C14-C13-C18120.4 (11)C4-C3-H3115.8 (12)N4-C13-C14119.34 (11)C1-C2-H2120.93 (11)C14-C13-C18120.4 (11)C4-C3-C6119.17 (11)C13-C14-H14119.3 (12)C3-C4-C3120.93 (11)C14-C13-C16120.4 (11)C4-C5-	N2—C6	1.3646 (15)	C11—C12	1.4393 (16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N3—C11	1.3108 (15)	C13—C14	1.4086 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C18	1.3754 (15)	C13—C18	1.4146 (17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N4—C12	1.2941 (16)	C14—C15	1.370 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C13	1.3692 (16)	C14—H14	0.974 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6	1.4156 (15)	C15—C16	1.411 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.4169 (16)	С15—Н15	0.92 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.3720 (17)	C16—C17	1.3739 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—Н2	0.934 (18)	С16—Н16	0.97 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.4153 (18)	C17—C18	1.4111 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.89 (2)	С17—Н17	0.994 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.3669 (17)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C1	117.99 (10)	C10—C9—Cl2	120.67 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N2—C6	116.94 (10)	C8—C9—C12	113.54 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—N3—C18	117.65 (10)	C9—C10—C11	124.28 (10)
$\begin{split} & \text{N1} - \text{C1} - \text{C6} & 120.87 (10) & \text{C11} - \text{C10} - \text{C13} & 115.17 (8) \\ & \text{N1} - \text{C1} - \text{C2} & 119.99 (10) & \text{N3} - \text{C11} - \text{C12} & 120.10 (10) \\ & \text{C6} - \text{C1} - \text{C2} & 119.13 (10) & \text{N3} - \text{C11} - \text{C10} & 117.49 (10) \\ & \text{C3} - \text{C2} - \text{C1} & 119.56 (11) & \text{C12} - \text{C11} - \text{C10} & 122.40 (10) \\ & \text{C3} - \text{C2} - \text{H2} & 123.7 (11) & \text{N4} - \text{C12} - \text{C11} & 123.88 (11) \\ & \text{C1} - \text{C2} - \text{H2} & 116.7 (11) & \text{N4} - \text{C12} - \text{C14} & 115.93 (9) \\ & \text{C2} - \text{C3} - \text{C4} & 120.80 (11) & \text{C11} - \text{C12} - \text{C14} & 120.14 (9) \\ & \text{C2} - \text{C3} - \text{C4} & 120.80 (11) & \text{C11} - \text{C12} - \text{C14} & 119.24 (11) \\ & \text{C4} - \text{C3} - \text{H3} & 123.4 (12) & \text{N4} - \text{C13} - \text{C18} & 120.48 (11) \\ & \text{C5} - \text{C4} - \text{C3} & 120.93 (11) & \text{C14} - \text{C13} - \text{C18} & 120.27 (11) \\ & \text{C5} - \text{C4} - \text{C4} & 118.1 (11) & \text{C15} - \text{C14} - \text{C13} & 119.33 (12) \\ & \text{C3} - \text{C4} - \text{H4} & 121.0 (11) & \text{C15} - \text{C14} - \text{H14} & 121.1 (11) \\ & \text{C4} - \text{C5} - \text{C6} & 119.17 (11) & \text{C13} - \text{C14} - \text{H14} & 121.1 (11) \\ & \text{C4} - \text{C5} - \text{C5} & 119.17 (11) & \text{C14} - \text{C15} - \text{C16} & 120.76 (13) \\ & \text{C6} - \text{C5} - \text{H5} & 117.9 (11) & \text{C14} - \text{C15} - \text{C16} & 120.76 (13) \\ & \text{N2} - \text{C6} - \text{C1} & 120.45 (10) & \text{C17} - \text{C16} - \text{C15} & 120.76 (13) \\ & \text{N2} - \text{C6} - \text{C1} & 120.40 (10) & \text{C17} - \text{C16} - \text{C15} & 120.76 (13) \\ & \text{C5} - \text{C6} - \text{C1} & 120.40 (10) & \text{C17} - \text{C16} - \text{H16} & 121.3 (11) \\ & \text{N2} - \text{C7} - \text{C8} & 123.65 (10) & \text{C15} - \text{C16} - \text{H16} & 121.3 (11) \\ & \text{N2} - \text{C7} - \text{C1} & 120.58 (8) & \text{C16} - \text{C17} - \text{C18} & 119.60 (12) \\ & \text{C8} - \text{C7} - \text{C1} & 120.58 (8) & \text{C16} - \text{C17} - \text{H17} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C11} - \text{C12} + 115 & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text{C1} - \text{C1} - \text{C1} - \text{C11} & 120.4 (10) \\ & \text$	C12—N4—C13	116.81 (10)	C9—C10—Cl3	120.43 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C6	120.87 (10)	C11—C10—Cl3	115.17 (8)
C6-C1-C2119.13 (10)N3-C11-C10117.49 (10)C3-C2-C1119.56 (11)C12-C11-C10122.40 (10)C3-C2-H2123.7 (11)N4-C12-C11123.88 (11)C1-C2-H2116.7 (11)N4-C12-C14115.93 (9)C2-C3-C4120.80 (11)C11-C12-C14120.14 (9)C2-C3-H3123.4 (12)N4-C13-C14119.24 (11)C4-C3-H3115.8 (12)N4-C13-C18120.48 (11)C5-C4-C3120.93 (11)C14-C13-C18120.27 (11)C5-C4-H4118.1 (11)C15-C14-H14121.1 (11)C4-C5-C6119.17 (11)C13-C14-H14121.1 (11)C4-C5-H5122.9 (11)C14-C15-C16120.76 (13)C6-C5-H5117.9 (11)C14-C15-H15121.1 (13)N2-C6-C5119.15 (10)C16-C15-H15118.0 (13)N2-C6-C1120.40 (10)C17-C16-C15120.76 (13)C5-C4-C1120.40 (10)C17-C16-H16121.3 (11)N2-C7-C8123.65 (10)C15-C16-H16117.9 (11)N2-C7-C11115.75 (8)C16-C17-C18119.60 (12)C8-C7-C11120.58 (8)C16-C17-H17120.4 (10)	N1—C1—C2	119.99 (10)	N3—C11—C12	120.10 (10)
C3-C2-C1119.56 (11)C12-C11-C10122.40 (10)C3-C2-H2123.7 (11)N4-C12-C11123.88 (11)C1-C2-H2116.7 (11)N4-C12-Cl4115.93 (9)C2-C3-C4120.80 (11)C11-C12-Cl4120.14 (9)C2-C3-H3123.4 (12)N4-C13-C14119.24 (11)C4-C3-H3115.8 (12)N4-C13-C18120.48 (11)C5-C4-C3120.93 (11)C14-C13-C18120.27 (11)C5-C4-H4118.1 (11)C15-C14-C13119.33 (12)C3-C4-H4121.0 (11)C15-C14-H14121.1 (11)C4-C5-C6119.17 (11)C13-C14-H14121.1 (11)C4-C5-H5122.9 (11)C14-C15-C16120.76 (13)C6-C5-H5117.9 (11)C14-C15-H15118.0 (13)N2-C6-C5119.15 (10)C16-C15-H15118.0 (13)N2-C6-C1120.45 (10)C17-C16-C15120.76 (13)C5-C6-C1120.45 (10)C17-C16-H16121.3 (11)N2-C7-C8123.65 (10)C15-C16-H16117.9 (11)N2-C7-C11115.75 (8)C16-C17-C18119.60 (12)C8-C7-C11120.58 (8)C16-C17-H17120.4 (10)	C6—C1—C2	119.13 (10)	N3—C11—C10	117.49 (10)
C3-C2-H2123.7 (1)N4-C12-C11123.8 (1)C1-C2-H2116.7 (1)N4-C12-Cl4115.93 (9)C2-C3-C4120.80 (1)C11-C12-Cl4120.14 (9)C2-C3-H3123.4 (12)N4-C13-C14119.24 (11)C4-C3-H3115.8 (12)N4-C13-C18120.48 (11)C5-C4-C3120.93 (11)C14-C13-C18120.27 (11)C5-C4-H4118.1 (11)C15-C14-C13119.33 (12)C3-C4-H4121.0 (11)C15-C14-H14121.1 (11)C4-C5-C6119.17 (11)C13-C14-H14121.1 (11)C4-C5-H5122.9 (11)C14-C15-C16120.76 (13)C6-C5-H5117.9 (11)C14-C15-H15121.1 (13)N2-C6-C5119.15 (10)C16-C15-H15118.0 (13)N2-C6-C1120.40 (10)C17-C16-C15120.76 (13)C5-C6-C1120.40 (10)C17-C16-H16121.3 (11)N2-C7-C8123.65 (10)C15-C16-H16117.9 (11)N2-C7-C11115.75 (8)C16-C17-C18119.60 (12)C8-C7-C11120.58 (8)C16-C17-H17120.4 (10)	C3—C2—C1	119.56 (11)	C12—C11—C10	122.40 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С2—Н2	123.7 (11)	N4—C12—C11	123.88 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С1—С2—Н2	116.7 (11)	N4—C12—Cl4	115.93 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	120.80 (11)	C11—C12—Cl4	120.14 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	123.4 (12)	N4—C13—C14	119.24 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	115.8 (12)	N4—C13—C18	120.48 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	120.93 (11)	C14—C13—C18	120.27 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С4—Н4	118.1 (11)	C15—C14—C13	119.33 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С4—Н4	121.0 (11)	C15—C14—H14	121.1 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	119.17 (11)	C13—C14—H14	119.5 (11)
$\begin{array}{cccccccc} C6-C5-H5 & 117.9(11) & C14-C15-H15 & 121.1(13) \\ N2-C6-C5 & 119.15(10) & C16-C15-H15 & 118.0(13) \\ N2-C6-C1 & 120.45(10) & C17-C16-C15 & 120.76(13) \\ C5-C6-C1 & 120.40(10) & C17-C16-H16 & 121.3(11) \\ N2-C7-C8 & 123.65(10) & C15-C16-H16 & 117.9(11) \\ N2-C7-C11 & 115.75(8) & C16-C17-C18 & 119.60(12) \\ C8-C7-C11 & 120.58(8) & C16-C17-H17 & 120.4(10) \end{array}$	С4—С5—Н5	122.9 (11)	C14—C15—C16	120.76 (13)
N2—C6—C5119.15 (10)C16—C15—H15118.0 (13)N2—C6—C1120.45 (10)C17—C16—C15120.76 (13)C5—C6—C1120.40 (10)C17—C16—H16121.3 (11)N2—C7—C8123.65 (10)C15—C16—H16117.9 (11)N2—C7—C11115.75 (8)C16—C17—C18119.60 (12)C8—C7—C11120.58 (8)C16—C17—H17120.4 (10)	С6—С5—Н5	117.9 (11)	C14—C15—H15	121.1 (13)
N2-C6-C1120.45 (10)C17-C16-C15120.76 (13)C5-C6-C1120.40 (10)C17-C16-H16121.3 (11)N2-C7-C8123.65 (10)C15-C16-H16117.9 (11)N2-C7-C11115.75 (8)C16-C17-C18119.60 (12)C8-C7-C11120.58 (8)C16-C17-H17120.4 (10)	N2—C6—C5	119.15 (10)	С16—С15—Н15	118.0 (13)
C5—C6—C1120.40 (10)C17—C16—H16121.3 (11)N2—C7—C8123.65 (10)C15—C16—H16117.9 (11)N2—C7—C11115.75 (8)C16—C17—C18119.60 (12)C8—C7—C11120.58 (8)C16—C17—H17120.4 (10)	N2—C6—C1	120.45 (10)	C17—C16—C15	120.76 (13)
N2—C7—C8123.65 (10)C15—C16—H16117.9 (11)N2—C7—C11115.75 (8)C16—C17—C18119.60 (12)C8—C7—C11120.58 (8)C16—C17—H17120.4 (10)	C5—C6—C1	120.40 (10)	C17—C16—H16	121.3 (11)
N2—C7—Cl1115.75 (8)C16—C17—C18119.60 (12)C8—C7—Cl1120.58 (8)C16—C17—H17120.4 (10)	N2—C7—C8	123.65 (10)	C15—C16—H16	117.9 (11)
C8—C7—Cl1 120.58 (8) C16—C17—H17 120.4 (10)	N2—C7—Cl1	115.75 (8)	C16—C17—C18	119.60 (12)
	C8—C7—Cl1	120.58 (8)	C16—C17—H17	120.4 (10)
N1—C8—C7 120.03 (10) C18—C17—H17 120.0 (10)	N1—C8—C7	120.03 (10)	C18—C17—H17	120.0 (10)
N1—C8—C9 116.17 (10) N3—C18—C17 119.66 (11)	N1—C8—C9	116.17 (10)	N3—C18—C17	119.66 (11)

supplementary materials

С7—С8—С9	123.69 (10)	N3—C18—C13	121.06 (10)
C10—C9—C8	125.76 (10)	C17—C18—C13	119.27 (11)
C8—N1—C1—C6	-1.53 (16)	C8—C9—C10—Cl3	-176.06 (9)
C8—N1—C1—C2	178.18 (11)	Cl2—C9—C10—Cl3	2.01 (15)
N1—C1—C2—C3	-179.56 (11)	C18—N3—C11—C12	1.06 (16)
C6—C1—C2—C3	0.15 (17)	C18—N3—C11—C10	-178.07 (10)
C1—C2—C3—C4	-0.48 (19)	C9—C10—C11—N3	-54.58 (17)
C2—C3—C4—C5	0.10 (19)	Cl3—C10—C11—N3	121.43 (10)
C3—C4—C5—C6	0.62 (19)	C9—C10—C11—C12	126.31 (13)
C7—N2—C6—C5	-179.23 (11)	Cl3—C10—C11—C12	-57.69 (14)
C7—N2—C6—C1	1.88 (16)	C13—N4—C12—C11	0.56 (17)
C4—C5—C6—N2	-179.84 (11)	C13—N4—C12—Cl4	-176.74 (9)
C4—C5—C6—C1	-0.94 (18)	N3-C11-C12-N4	-1.63 (18)
N1-C1-C6-N2	-0.85 (17)	C10-C11-C12-N4	177.46 (11)
C2-C1-C6-N2	179.44 (11)	N3-C11-C12-Cl4	175.56 (9)
N1-C1-C6-C5	-179.73 (11)	C10-C11-C12-Cl4	-5.35 (16)
C2—C1—C6—C5	0.56 (17)	C12—N4—C13—C14	-179.97 (12)
C6—N2—C7—C8	-0.66 (17)	C12—N4—C13—C18	0.90 (17)
C6—N2—C7—Cl1	-179.12 (9)	N4-C13-C14-C15	-179.18 (13)
C1—N1—C8—C7	2.74 (16)	C18—C13—C14—C15	-0.05 (19)
C1—N1—C8—C9	178.96 (10)	C13-C14-C15-C16	-0.5 (2)
N2—C7—C8—N1	-1.74 (18)	C14—C15—C16—C17	0.7 (2)
Cl1—C7—C8—N1	176.65 (9)	C15-C16-C17-C18	-0.4 (2)
N2—C7—C8—C9	-177.66 (11)	C11—N3—C18—C17	179.47 (11)
Cl1—C7—C8—C9	0.73 (16)	C11—N3—C18—C13	0.36 (16)
N1-C8-C9-C10	124.93 (13)	C16-C17-C18-N3	-179.24 (12)
C7—C8—C9—C10	-59.01 (18)	C16-C17-C18-C13	-0.11 (19)
N1-C8-C9-Cl2	-53.26 (13)	N4-C13-C18-N3	-1.41 (18)
C7—C8—C9—Cl2	122.81 (11)	C14-C13-C18-N3	179.47 (11)
C8—C9—C10—C11	-0.3 (2)	N4—C13—C18—C17	179.47 (11)
Cl2—C9—C10—C11	177.81 (9)	C14-C13-C18-C17	0.35 (18)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C17—H17····N2 ⁱ	0.995 (17)	2.454 (17)	3.2609 (16)	137.8 (13)
C16—H16····Cg1 ⁱⁱ	0.97 (2)	3.00 (2)	3.9664 (16)	176.0 (16)
Symmetry codes: (i) x , $-y+3/2$, $z+1/2$; (ii) x , $-y+1/2$,	z - 1/2.			

Fig. 1

Fig. 2

